Efficient quantum algorithm for preparing molecular-system-like states on a quantum computer
نویسندگان
چکیده
We present an efficient quantum algorithm for preparing a pure state on a quantum computer, where the quantum state corresponds to that of a molecular system with a given number m of electrons occupying a given number n of spin orbitals. Each spin orbital is mapped to a qubit: the states 1 and 0 of the qubit represent, respectively, whether the spin orbital is occupied by an electron or not. To prepare a general state in the full Hilbert space of n qubits, which is of dimension 2n, O 2n controlled-NOT gates are needed, i.e., the number of gates scales exponentially with the number of qubits. We make use of the fact that the state to be prepared lies in a smaller Hilbert space, and we find an algorithm that requires at most O 2m+1nm /m! gates, i.e., scales polynomially with the number of qubits n, provided n m. The algorithm is simulated numerically for the cases of the hydrogen molecule and the water molecule. The numerical simulations show that when additional symmetries of the system are considered, the number of gates to prepare the state can be drastically reduced, in the examples considered in this paper, by several orders of magnitude, from the above estimate.
منابع مشابه
Designing a quantum genetic controller for tracking the path of quantum systems
Based on learning control methods and computational intelligence, control of quantum systems is an attractive field of study in control engineering. What is important is to establish control approach ensuring that the control process converges to achieve a given control objective and at the same time it is simple and clear. In this paper, a learning control method based on genetic quantum contr...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملOptimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits
There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....
متن کاملThermalization in nature and on a quantum computer.
In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Bas...
متن کامل